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Abstract 

Understanding of numerical development is growing rapidly, but the volume and 

diversity of findings can make it difficult to perceive any coherence in the process. The 

integrative theory of numerical development posits that a coherent theme is present, 

however – progressive broadening of the set of numbers whose magnitudes can be 

accurately represented—and that this theme unifies numerical development from infancy 

to adulthood. From this perspective, development of numerical representations involves 

four major acquisitions: 1) increasingly precise representations of magnitudes of numbers 

expressed nonsymbolically, 2) linking nonsymbolic to symbolic numerical 

representations, 3) extending understanding to increasingly large whole numbers, and 4) 

extending understanding to all rational numbers. Thus, the mental number line expands 

rightward to encompass larger whole numbers, leftward to encompass negatives, and 

interstitially to include fractions and decimals. 
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An Integrative Theory of Numerical Development 

Introduction 

Research on numerical development is expanding at a remarkable rate. Thriving 

literatures have arisen on numerical development in infancy, childhood, and adolescence; 

on development of subitizing, counting, estimation, and arithmetic; on knowledge of 

whole numbers, fractions, decimals, and negatives; on nonsymbolic and symbolic 

representations; on conceptual and procedural knowledge; on underpinnings of numerical 

development in evolutionary processes, neural processes, cognitive processes, and 

emotional processes; on longitudinal stability of individual differences; and on numerical 

competence in normal and special populations. The list does not end there; researchers 

have also examined relations to numerical knowledge of variations in economic status, 

culture, language, and instruction; relations among numerical, spatial, and temporal 

knowledge; relations of numerical knowledge to more advanced mathematics; and 

relations of interventions that improve numerical knowledge to subsequent learning; to 

name a subset of areas within the field (see Table 1 of the Supplemental Materials 

available online for references for each area). 

Important and intriguing recent discoveries in all of these areas attest to the health 

of the field of numerical development. However, the sheer number of discoveries and 

areas can make it difficult to perceive any coherence in the developmental process. Are 

coherent themes present, or is numerical development just “one darn thing after another”? 

The Integrated Theory of Numerical Development 

The integrated theory of numerical development proposes that the continuing 

growth of understanding of numerical magnitudes provides a unifying theme for 
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numerical development. Within this perspective, numerical development is a process of 

broadening the set of numbers whose magnitudes, individually or in arithmetic 

combination, can be accurately represented. The theory identifies four main trends in 

numerical development: 1) representing increasingly precisely the magnitudes of 

numbers expressed nonsymbolically, 2) linking nonsymbolic to symbolic representations 

of numerical magnitudes, 3) extending the range of whole numbers whose magnitudes 

can be represented accurately, and 4) representing accurately the magnitudes of numbers 

other than whole numbers, in particular fractions, decimals, and negatives. 

(Insert Figure 1 about here.) 

The integrative theory begins with the popular metaphor of the mental number 

line. However, it goes on to propose that this mental number line is a dynamic, 

continually changing, structure rather than a fixed, static one. Initially useful for 

organizing knowledge of nonsymbolic numbers and then of small, positive, symbolic 

whole numbers, the mental number line is progressively extended rightward to represent 

larger symbolic whole numbers, leftward to represent negative numbers, and interstitially 

to representing symbolic fractions and decimals (see Figures 1 and 2). 

A variety of data, both correlational and causal, support the integrated theory’s 

emphasis on the importance of accurately representing numerical magnitudes. 

Preschoolers’ success in identifying the more numerous of two dot collections predicts 

their math achievement as much as two years later, even after controlling for other 

intellectual variables, (Libertus, Feigenson, & Halberda, 2011; Mazzocco, Feigenson, & 

Halberda, 2011). Accuracy of number line estimation correlates substantially with overall 

mathematics achievement from kindergarten through at least eighth grade (Booth & 
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Siegler, 2006; Siegler & Booth, 2004; Siegler, Thompson, & Schneider, 2011). The 

accuracy of first graders’ location of symbolic whole numbers on number lines predicts 

the accuracy of their fraction number line estimation and fraction arithmetic in seventh 

and eighth grades, even after controlling for IQ, working memory, and socioeconomic 

status (SES; Bailey, Siegler, & Geary, in press). Moreover, manipulations that improve 

representations of whole number magnitudes improve subsequent learning of whole 

number arithmetic (Booth & Siegler, 2008; Siegler & Ramani, 2009), and manipulations 

aimed at improving fraction magnitude representations improve learning of fraction 

arithmetic (Fuchs et al., 2013; Fuchs et al., in press). 

These studies demonstrate the importance of numerical magnitude representations 

from early childhood through adolescence. The acquisition of knowledge of nonsymbolic 

numerical magnitudes actually begins even earlier, in infancy. 

Nonsymbolic Representations of Numerical Magnitudes 

Long before children learn number words, they represent numerical magnitudes 

nonverbally. The mechanism by which people (and many other species) do so has been 

labeled the Approximate Number System (ANS) (Halberda, Mazzocco, & Feigenson, 

2008). From early in infancy, the ANS allows discrimination between sets of objects in 

which the ratio of the larger to the smaller set is sufficiently large, independent of the 

area and perimeter of the objects, their luminance, and other potentially confounding 

variables. Discriminability between sets is a function of the ratio of their number of 

items, as described by Weber’s Law. For example, discriminating between 8 and 12 

objects and between 16 and 24 is equally difficult (De Smedt, Noel, Gilmore, & Ansari, 

2013). A second magnitude representation mechanism, sometimes termed object files, 
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also exists early in infancy and yields more precise discrimination between sets of 1-4 

objects than the general ratio-based mechanism would produce (Feigenson, Dehaene, & 

Spelke, 2004). These patterns are sometimes described in terms of distance and 

magnitude effects; discrimination between set sizes is more accurate when the set sizes 

are more discrepant (distance effects) and involve fewer objects (magnitude effects). 

The precision of nonsymbolic number discrimination increases considerably over 

the first few years. At six months, infants discriminate 2:1 ratios, but not until nine 

months do they discriminate 3:2 ratios (Wood & Spelke, 2005). The improvement 

continues well beyond infancy; 3-year-olds consistently discriminate dot displays that 

differ by 4:3 ratios, 6-year-olds discriminate displays that differ by 6:5 ratios, and some 

adults discriminate displays that differ by 11:10 ratios (Halberda & Feigenson, 2008; 

Piazza et al., 2010). 

Discrmination of nonsymbolic numerical magnitudes might seem an isolated skill 

of little importance, but individual differences in the skill at six months are related to 

mathematics achievement on standard symbolic mathematics tasks at three years, even 

after statistically controlling for IQ (Starr, Libertus, & Brannon, 2013). Moreover, 

individual differences at age 3 are related to scores on standardized mathematics 

achievement tests concurrently and two years later (Mazzocco, Feigenson, & Halberda, 

2011). 

On the other hand, three recent literature reviews, two including meta-analyses, 

indicate that relations between ANS acuity and math achievement are considerably 

weaker and less consistently present than relations between representations of symbolic 

numerical magnitude representations and math achievement (Chen & Li, 2014; De 



  

  

 

 

 

 

 

 

  

 

  

 

  

7 

Smedt, Noël, Gilmore, & Ansari, 2013; Fazio, Bailey, Thompson, & Siegler, 2014). 

Furthermore, symbolic numerical knowledge has been found to fully mediate the relation 

between nonsymbolic numerical knowledge and mathematics achievement with both 4-

year-olds (vanMarle, Chu, Li, & Geary, 2014) and 6-year-olds (Göbel, Watson, Lervag, 

& Hulme, 2014). Nonetheless, knowledge of nonsymbolic magnitude seems to provide a 

foundation for understanding the referents of at least small symbolic numbers. 

(Insert Figure 2 about here.) 

From Nonsymbolic to Symbolic Representations of Numerical Magnitudes 

Behavioral and neural data show several striking parallels between 

representations of nonsymbolic and symbolic magnitude. Behaviorally, the same distance 

and magnitude effects that are shown with nonsymbolic magnitudes are shown with 

symbolic ones, and the mathematical functions relating solution times to problem 

characteristics also are similar (Moyer & Landauer, 1967). At the neural level, not only 

do brain areas involved with representations of symbolic and nonsymbolic magnitude 

correspond closely, but habituation of either symbolic or nonsymbolic representations 

produces habituation of the other, as measured by fMRI activations (Piazza, et al., 2007). 

Despite these similarities, the process of connecting symbolic to nonsymbolic 

numerical magnitude representations is surprisingly slow and piecemeal. On a task in 

which 3- and 4-year-olds were asked to give the experimenter N objects, some children 

who could count to 10 knew only the number 1; others only the numbers 1 and 2; others 

only the numbers 1, 2, and 3; and others only the numbers 1, 2, 3, and 4 (Le Corre & 

Carey, 2007). Despite being able to count accurately sets of 5-10 objects, many of these 

children assigned the numbers 5-10 to sets of objects in ways uncorrelated with the set 
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size. Not until age 4 ½ did most children respond to number words beyond 4 on the “give 

X task” in ways correlated with the sets’ magnitudes. Other paradigms have yielded 

similar results (e.g., Schaeffer, Eggleston, & Scott, 1974), indicating that even with very 

small whole numbers, connecting symbolic numbers to their magnitudes develops slowly. 

Representing an Increasing Range of Whole Number Magnitudes 

Even after children know the relative magnitudes of the numbers 1-10, they 

continue to have limited knowledge of the magnitudes of larger numbers. The acquisition 

of knowledge of the magnitudes of two-, three-, and four-digit whole numbers, like the 

acquisition of knowledge of the magnitudes of single-digit ones, is slow and piecemeal. 

This is apparent in number line estimation. On this task, children are presented a series of 

lines with a constant pair of numbers at the two ends (e.g., 0 and 100) and asked to locate 

a series of other numbers on the line (one number per line). Afterward, alternative 

mathematical functions are fit to the estimates to establish the one that best describes the 

estimation pattern. 

With symbolic as with nonsymbolic numbers, the psychological distance between 

numbers at the low end of the range is much larger than that between numbers of 

identical arithmetic distance at the high end of the range. Thus, when asked to locate 

symbolically expressed numbers on a 0-10 number line, 3- and 4-year-olds space their 

estimates of small numbers (e.g., 2 and 3) much farther apart than their estimates of large 

numbers (e.g., 7 and 8), whereas 5- and 6-year-olds space the two pairs of numbers 

equally (Bertelletti, et al., 2010). The younger children’s estimates increase 

logarithmically with the sizes of the number being estimated, whereas the estimates of the 

older children increase linearly. 
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The developmental sequence repeats itself at older ages with larger numbers. 

Thus, in the 0-100 range, 5- and 6-year-olds generate logarithmically increasing patterns 

of estimates, whereas 7- and 8-year-olds’ estimates increase linearly (Geary, et al., 2007; 

Siegler & Booth, 2004). In the 0-1000 range, 7- and 8-year-olds generate logarithmically 

increasing patterns of estimates, but 9- and 10-year-olds generate linearly increasing ones 

(Booth & Siegler, 2006; Siegler & Opfer, 2003). The same 7- and 8-year-olds who 

consistently produced linear estimation patterns on 0-100 number lines produced 

logarithmic patterns on 0-1000 lines (Siegler & Opfer, 2003), reflecting the gradual 

extension of numerical magnitude knowledge to larger whole numbers. 

Performance on number line estimation and other measures of numerical 

magnitude knowledge with symbolically expressed numbers is related strongly to other 

aspects of mathematical knowledge. Accuracy and linearity of number line estimation of 

symbolic whole number magnitudes for both the 0-100 and 0-1000 ranges correlate 

strongly with arithmetic proficiency (Booth & Siegler, 2008; Ramani & Siegler, 2008) 

and overall mathematics achievement (Geary, et al., 2007). The relation between 

symbolic numerical magnitude estimation and mathematics achievement remains even 

after statistically controlling plausible third variables including arithmetic, reading 

achievement, and IQ (Bailey, et al., in press; Booth & Siegler, 2006; 2008; Geary, et al., 

2007). Furthermore, having children randomly play a number board game designed to 

improve representations of symbolic magnitude yields gains not only in their magnitude 

knowledge but also in other tasks, such as learning novel arithmetic problems (Ramani & 

Siegler, 2008; Siegler & Ramani, 2009). 
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These findings suggest that arithmetic is far from the rote memorization process 

that it is often portrayed as being. The role of magnitude knowledge in arithmetic is 

evident on verification tasks, where both children and adults consistently take longer to 

reject incorrect answers that are close in magnitude (e.g., 6*8=46) than incorrect answers 

that are distant in magnitude (e.g., 6*8=26) (Ashcraft, 1982). This role of magnitude 

knowledge in arithmetic is also evident in spontaneous retrieval errors, which usually are 

close in magnitude to the correct answer (Lemaire & Siegler, 1995). Magnitude 

knowledge can lead to activation of plausible answers, detection of implausible answers, 

and substitution of correct procedures for flawed ones that produce implausible answers. 

From Whole Numbers to Rational Numbers 

Development of knowledge of nonsymbolic rational numbers shows clear 

similarities to acquisition of nonsymbolic whole numbers. For instance, 6-month-olds 

discriminate 2:1 but not 3:2 ratios, just as they do with whole numbers. Thus, when 

habituated to a 2:1 ratio of blue and yellow dots, they dishabituate when shown a 4:1 

ratio but not when shown a 3:1 ratio (McCrink & Wynn, 2007). Moreover, just as 

specific neurons are tuned to respond maximally to specific whole numbers, specific 

neurons are tuned to respond maximally to specific ratios (Jacob & Nieder, 2009). 

Development of symbolically expressed whole numbers and fractions also shows 

several striking differences. The most obvious differences are that acquisition of 

knowledge of symbolic fractions begins much later and never reaches as high a level. 

Thus, even adults attending community college are only 70% accurate in comparing 

magnitudes of fractions, whereas they are almost 100% accurate in comparing 

corresponding magnitudes of whole numbers (DeWolf, et al., 2014). 
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Within the integrated theory of numerical development, acquiring knowledge of 

symbolic fractions requires learning that several invariant properties of whole numbers 

are not invariant properties of all numbers. Whole numbers have unique successors, can 

be represented by a single symbol, never decrease with multiplication, never increase 

with division, and so on. In contrast, none of these qualities are invariant for rational 

numbers. However, whole and rational numbers are alike in having magnitudes that can 

be represented on number lines. Thus, understanding rational numbers requires learning 

that many invariant properties of whole numbers are not true for rational numbers and 

also learning the mapping between symbolically expressed rational numbers and the 

magnitudes they represent. 

Consistent with this analysis, despite the obvious differences between 

development of understanding of whole number and fraction magnitudes, the two also 

show important similarities. One similarity is that brain regions associated with fraction 

magnitude representations greatly overlap with those associated with whole number 

magnitude representations (Ischebeck, Schocke, & Delazer, 2009). In addition, both show 

distance effects on magnitude comparison tasks: For fractions with unequal numerators 

and denominators, the closer the fraction magnitudes being compared, the longer the 

comparison takes (Meert, Grégoire, & Noël 2009; Schneider & Siegler, 2010). 

Furthermore, with fractions as with whole numbers, individual differences in magnitude 

knowledge are highly correlated with individual differences in arithmetic and overall 

math achievement (Bailey, Hoard, Nugent, & Geary, 2012; Siegler, Thompson, & 

Schneider, 2011), even when reading achievement and executive functioning are 

statistically controlled (Siegler & Pyke, 2013). Moreover, longitudinal data show that 6-
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year-olds’ knowledge of whole number magnitudes predicts 13-year-olds’ knowledge of 

fraction magnitudes (Bailey, Siegler & Geary, in press), even after controlling for the 

common influence of IQ, working memory, and SES. Finally, the positive effects on 

subsequent arithmetic learning of training designed to increase knowledge of whole 

number magnitude extends to fractions: Not only does training aimed at improving 

fraction magnitude knowledge also improve fraction arithmetic, but gains in fraction 

magnitude knowledge fully mediate improvements in fraction arithmetic learning (Fuchs 

et al., 2013; Fuchs et al., in press). 

Fewer studies have been conducted on representations of negative than positive 

numbers, and none of them appear to be with negative fractions. However, on the basis of 

the limited available data, magnitudes seem to play a similarly central role in 

representations of negative and positive numbers. Brain regions associated with 

representations of the magnitudes of negative numbers overlap considerably with those 

associated with representations of the magnitudes of positive numbers (Gullick, Wolford, 

& Temple, 2012). Developmental changes in brain activity associated with the two also 

show parallels; with negative as with positive numbers, activation of frontal areas on 

magnitude comparison tasks decreases from childhood to adulthood, whereas activation 

of parietal areas increases (Gullick & Wohlford, 2013). Behavioral evidence indicates 

that as with positive numbers, both 10- to 12-year-olds and adults show distance effects 

with negatives on magnitude comparison problems (Ganor-Stern, Pinhas, Kallai, & 

Tzelgov, 2010; Gullick & Wohlford, 2013). Moreover, the size of distance effects with 

positive numbers are related to the size of distance effects with negative numbers, at least 
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for 10-year-olds (Gullick & Wohlford, 2013). Thus, although the research base is scanty, 

magnitude knowledge appears to play a similar role with negative and positive numbers. 

Conclusions 

A basic tenet of the integrated theory is that numerical development is largely a 

process of broadening the range and types of numbers whose magnitudes are well 

understood. The developmental process includes at least four trends: representing 

nonsymbolic numerical magnitudes increasingly precisely, linking nonsymbolic and 

symbolic representations of small whole numbers, extending the range of numbers whose 

magnitudes are accurately represented to larger whole numbers, and representing 

accurately the magnitudes of rational numbers, including fractions, decimals, 

percentages, and negatives. These trends begin at different ages, and the level of mastery 

reached by adulthood varies considerably among different types of numbers, but many 

commonalities, both neural and behavioral, are evident in the acquisition process. 

Individual differences in mastery of all types of numerical magnitudes are linked to 

individual differences in arithmetic proficiency and mathematics achievement, and 

experiences that improve magnitude representations also improve other numerical skills, 

such as arithmetic learning. Thus, accurate representations of numerical magnitude can 

be seen as the common core of numerical development. 
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Figure Captions 

Figure 1. Improving precision of nonsymbolic number discrimination with age. The sets 

of black and white dots represent experimental stimuli whose numerosity can be 

discriminated reliably at the specified ages. 

Figure 2. Knowledge of symbolic numerical magnitudes expands from small whole 

numbers to larger whole numbers to rational numbers, including common fractions, 

decimals, and negatives. The ages associated with the expansions indicate the period in 

which knowledge of each type of magnitude typically shows the greatest increases. 
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Figure 1: The development of knowledge of nonsymbolic numerical magnitudes 

Precision of Discrimination 

2:1 ratio (≈ 6 months) 

3:2 ratio (≈ 9 months) 

4:3 ratio (≈ 3 years) 

6:5 ratio (≈ 6 years) 

11:10 ratio (some adults) 
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